Муниципальное бюджетное образовательное учреждение «Пушкинская средняя общеобразовательная школа Омского муниципального района Омской области» с. Пушкино, ул. 40 лет Победы, 27 тел./факс 939-292

e-mail: puschkino2017@mail.ru

«СОГЛАСОВАНО»	«УТВЕРЖДЕНО»
Руководитель структурного	Директор школы
подразделения	Т.А. Кожушко
А.С. Катков	
Приказ № от «» 2024 г.	Приказ № от « » 2024 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Лаборатория молекулярной цитогенетики»

НАПРАВЛЕННОСТЬ: ЕСТЕСТВЕННО-НАУЧНАЯ

Уровень программы: ознакомительный Возраст обучающихся:15-18 лет Срок реализации:1 год

Составитель-разработчик: Фоминская Вера Михайловна

с. Пушкино, 2024 г.

СОДЕРЖАНИЕ

1.	Пояснительная записка	3
2.	Учебный (тематический) план	7
3.	Содержание учебного (тематического) плана	8
4.	Организационно-педагогические условия реализацииПрограммы	10
5.	Список литературы, используемой при написании Программы	11

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа

«Лаборатория молекулярной цитогенетики» (далее – Программа) естественнонаучной направленности ознакомительного уровня помогает обучающимся глубже понять основные генетические закономерности, которые в полной мере приложимы к человеку; сформировать умения работать с серьезными источниками информации, в которых знания излагаются с точки зрения научной дисциплины, в точном соответствии с современным состоянием науки.

Актуальность Программы

«Генетика – это сердцевина биологической науки, любой факт в биологии становится понятным лишь в свете генетики; лишь в рамках генетики разнообразие жизненных форм и процессов может бытьосмысленно как единое целое» (Дж. Кайгер).

Беседы с обучающимися, анкетирование убедительно свидетельствуют о том, что наука генетика вызывает у них большой интерес. Программа

«Лаборатория молекулярной цитогенетики» позволяет проверить готовность обучающихся к усвоению материала повышенного уровня сложности по данной теме, развивает их интерес и профориентационные устремления.

Новизна Программы

Связь содержания изучаемого материала с жизнью самого ученика в значительной мере стимулирует формирование познавательного интереса. Поэтому в содержание курса включен ряд вопросов, которые исследуются в современной науке генетике. Еще один фактор, помогающий школьникам определиться в выборе дальнейшего жизненного пути, — ориентация содержания Программы на старшую школу. В основу Программы положено системное, поэтапное ознакомление с вопросами по молекулярным и цитологическим основам наследственности, закономерностям изменчивости, генетике человека и другим аспектам.

Реализация данной Программы содействует конкретизации законов генетики, способствует пропаганде генетических знаний, обучающиеся начинают с большей ответственностью относиться к себе, к окружающим людям, к окружающей среде.

Педагогическая целесообразность

Реализация Программы способствует формированию у обучающихся навыков практической и экспериментальной деятельности в процессе изучения основных биологических законов и закономерностей; содействует их профессиональному самоопределению. Данная Программа может бытьиспользован для подготовки обучающихся к ГИА.

Цель Программы — знакомство с разделами молекулярной цитогенетики и развитие у обучающихся умений и навыков решения цитогенетических задач разной сложности.

Задачи Программы

Обучающие:

- сформировать умения и навыки комплексного осмысления знаний молекулярной биологии;
- сформировать навыки решения генетических задач с применением теоретических знаний;
- заложить основы знаний об основных методах генетических исследований, закономерностях наследственности организмов и их цитологических основах;
- сформировать культуру работы с научной литературой.

Развивающие:

- развить интерес к изучению генетики как важной составляющейбиологической науки;
- развить интеллектуальные и практические умения обучающихсясамостоятельно приобретать и применять на практике полученные знания;
- развить умения обучающихся анализировать содержание генетических задач и находить различные способы их решения;
 - способствовать расширению кругозора и познавательной активностиобучающихся;
 - содействовать профессиональному самоопределению обучающихсяв медицине.

Воспитательные:

- воспитать устойчивый профессиональный интерес к изучениюбиологии;
- воспитать высокие моральные качества: любовь к своей будущейпрофессии, верность долгу, чувство гуманизма и патриотизма;
- воспитать бережное отношение к собственному здоровью и здоровью окружающих.

Отличительная особенность данной Программы

Генетика — наука о наследственности и изменчивости организмов. В содержание Программы включен ряд вопросов, которые исследуются в современной науке и широко освещаются в средствах массовой информации. На современном этапе известна внутренняя структура гена, осуществляются манипуляции с генами, возникла генная инженерия, появилась возможность клонирования живых существ, завершена расшифровка генетического кода человека.

Развитие генетики тесно связано с достижениями молекулярной биологией. В содержание Программы включен раздел «Решение генетическихи цитологических задач», который поможет лучше понять основные закономерности молекулярной биологии.

Категория обучающихся

Программа разработана для обучающихся 15-18 лет, желающих получить знания по молекулярным основам цитогенетики, без ограничений - независимо от уровня способностей в области биологии.

Сроки реализации

Программа рассчитана на 1 год обучения. Общее количество часов в годсоставляет 72 часа.

Формы и режим занятий

Программа реализуется 1 раз в неделю по 2 часа. Продолжительность учебных занятий установлена с учетом возрастных особенностей обучающихся, допустимой нагрузки в соответствии с санитарными нормамии правилами, утвержденными СанПин 2.4.4.3172-14.

Планируемые результаты освоения Программы

По итогам реализации Программы обучающиеся будут знать:

- основные правила и законы наследственности: единообразиегибридов первого поколения, расщепление признаков, независимое наследование, сцепленное наследование;
- хромосомную теорию наследственности, методы изучения наследственности;
- закономерности изменчивости организмов: мутации, модификации;
- значение генетики для медицины, основные принципы генной инженерии.
 - По итогам реализации Программы обучающиеся будут *уметь*:
- применять знания по молекулярной биологии, митозу, мейозу, оплодотворению для раскрытия сущности [Введите текст]

законов наследования;

- давать характеристику типам скрещивания, приводить примеры, конкретизирующие рассматриваемые закономерности;
- приводить примеры практического применения генетических знаний в медицине, сельском хозяйстве и др.;
- применять знания закономерностей наследственности дляобоснования мероприятий по охране природы, приемов выращиваниярастений и животных, получения новых сортов, пород и гибридов;
- пользоваться генетической терминологией и символикой; определять сферу деятельности генетических законов применительно к конкретным ситуациям;
- решать генетические задачи.

Формы контроля и оценочные материалы

Формы контроля и оценочные материалы служат для определения результативности освоения Программы обучающимися. Аттестация проводится 2 раза в год: промежуточная — по итогам 1 полугодия, итоговая —в конце учебного года.

В течение учебного года проводится самодиагностика и контроль по основным темам Программы.

Формы проведения аттестации:

• выполнение практических заданий (практикум, лабораторнаяработа); тестирование; зачётная работа.

УЧЕБНЫЙ (ТЕМАТИЧЕСКИЙ) ПЛАН

№ п/п	Название разделов/тем	Колич часов	чество				Формы аттестации/контроля
		Всего	Теория	Практика			
1.	Вводное занятие	2	2		Входящее тестирование		
2.	Молекулярные основы наследственности	4	2	2	Текущий контроль. Выполнение практических заданий		
3.	Цитологические основы наследственности	16	8	8	Текущий контроль. Выполнение практических заданий		
4.	Закономерности наследования	20	10	10	Текущий контроль. Выполнение практических заданий		
5.	Генетика человека	6	2	4	Текущий контроль. Выполнение практических заданий		

6.	Генотип и среда	4	2	2	Текущий контроль. Выполнение практических заданий
7.	Генетика популяции	2	1	1	Текущий контроль. Выполнение практических заданий
8.	Закономерности изменчивости	4	2	2	Текущий контроль. Выполнение практических заданий
9.	Современные исследования в	12	8	4	Социологический
	генетике				опрос
10.	Обобщение	2		2	Зачетная работа
	ИТОГО:	72	37	35	

СОДЕРЖАНИЕ УЧЕБНОГО (ТЕМАТИЧЕСКОГО) ПЛАНА

1. Вводное занятие. Инструктаж.

Теория. Введение в программу «Лаборатория молекулярной цитогенетики». Формы и методы деятельности. План работы на учебный год. Инструктаж по технике безопасности.

Практика. Первичная диагностика. Тестирование.

Раздел 2. Молекулярные основы наследственности

Теория. Строение и функции нуклеиновых кислот. Роль ДНК и РНК в передаче наследственных свойств и биосинтезе белка. Код ДНК. Свойства генетического кода. Репликация ДНК. Реакции матричного синтеза. Мутации в ДНК, ведущие к изменениям полипептидной цепи. Принцип комплементарности. Правила Чаргаффа. Молекулярные механизмы генетических процессов.

Практика. Решение задач по цитологии.

Раздел 3. Цитологические основы наследственности

Теория. Деление клетки и его значение. Виды деления клеток. Амитоз, митоз, мейоз. Этапы деления клеток. Кроссинговер и конъюгация. Генетическая индивидуальность каждого индивидуума. Решение задач на изменение числа хромосом и хроматид на разных этапах деления клеток. Причины, влияющие на изменение числа хромосом. Полиплоидия и анеуплоидия. Вредное влияние алкоголя и никотина на развитие организма.

Практика. Лабораторные работы «Митоз на корешках лука», «Изучение микропрепарата яйцеклетки». Митоз и мейоз в жизненных циклахразных отделов растений.

Раздел 4. Закономерности наследования

Теория. Основные закономерности наследственности организмов и их цитологические основы. Основные понятия генетики. Моно- и дигибридное скрещивание. Законы наследственности, установленные Г. Менделем. Возвратное и анализирующее скрещивание. Неполное доминирование и кодоминирование. Летальные гены. Множественные аллели. Сцепленное наследование. Закон Т. Моргана. Нарушения сцепления.

Практика. Решение задач на все виды закономерностей наследования.

Раздел 5. Генетика человека

Теория. История исследований генетики человека.

Клиникогенеалогический метод. Близнецовый метод. Цитогенетический метод. Антропогенетические методы. Иммуногенетические методы. Популяционногенетические методы. Биохимические методы.

Генетика человека. Взаимодействие генов. Сцепленное наследование генов у человека. Генетика пола. Наследственность и среда. Типы изменчивости у человека. Наследование дифференцированного состояния клеток. Химерные и трансгенные организмы [Введите текст]

Практика. Решение задач: «Родословная семьи», «Наследование групп крови и резус-фактора у человека», «Наследование признаков, сцепленных с полом».

Раздел 6. Генотип и среда

Теория. Адаптивная модификация. Норма реакции.

Практика. Составление вариационных рядов и построение кривых.

Изучение скорости сворачивания молока. Определение жирности молока.

Раздел 7. Генетика популяции

Теория. Генетическая структура популяций. Закон Харди-Вайнберга.

Мутационный процесс. Дрейф генов. Генетический полиморфизм.

Практика. Решение задач на закон Харди-Вайнберга. Моделирование дрейфа генов.

Раздел 8. Закономерности изменчивости

Теория. Виды изменчивости. Мутации, их причины. Виды мутаций. Мутагены — вещества вызывающие мутации. Загрязнение природной среды мутагенами и его последствия.

Практика. Лабораторная работа «Изучение химического и бытовогозагрязнения воды, почвы, воздуха».

Раздел 9. Современные исследования в генетике

Теория. Роль генетики на современном этапе развития цивилизации. Генная и клеточная инженерия, их использование на практике. Этические аспекты исследований в области генной инженерии. Биотехнология — наука будущего. Проблема создания и использования трансгенных организмов. Получение трансгенных продуктов питания: «за» и «против». Маркировка генетически модифицированных продуктов. Перспективы развития биотехнологии. Нанотехнология в микробиологии.

Практика Проведение социологического опроса: «Выявление отношения людей к трансгенным продуктам». Просмотр видеофильмов одостижениях генной инженерии, о трансгенных растениях и животных.

Обобшение

Практика. Итоговая аттестация. Зачетная работа.

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯРЕАЛИЗАЦИИ ПРОГРАММЫ

Общие принципы реализации содержания Программы:

- актуальность, научность, наглядность;
- доступность для учащихся 14-18 лет;
- целостность, объективность, вариативность;
- систематичность;
- практическая направленность;
- реалистичность.

Основной формой организации учебного процесса является учебное занятие:

- теоретические занятия: беседа с использованием иллюстративно- демонстрационного материала; лекция (часто проблемная лекция), дискуссия;
- практические занятия: лабораторные работы, решение биологических задач.

Усвоение материала контролируется при помощи тестирования, выполнения практических заданий, лабораторных работ.

Заключительное (итоговое) занятие проводится в форме зачетной работы.

Материально-технические условия реализации Программы

Программа реализуется с применением технических средств обученияи лабораторного оборудования:

- компьютеры;
- экран;
- микроск
- матовые стекла;
- кисточки;
- модель ДНК РНК;
- коллекция линий дрозофилы с разной окраской глаз, тела, формыкрыльев;
- набор постоянных препаратов мутаций дрозофилы;
- наборы колосьев разных видов пшеницы;
- наборы семян фасоли разной окраски и размера.

СПИСОК ЛИТЕРАТУРЫ, ИСПОЛЬЗУЕМЫЙ ПРИНАПИСАНИИ ПРОГРАММЫ

- 1. Асанов А.Ю., Демикова Н.С., Голимбет В.Е. Основы генетики. М.: Akademia, 2012.
- 2. Банин В.В. Цитология. Функциональная ультраструктура клетки. Атлас. Учебное пособие. М.: ГЭОТАР-Медиа, 2016.
- 3. Богданова Т.Л., Солодова Е.А. Биология. Справочник для школьников и поступающих в вузы. Курс подготовки к ГИА, ЕГЭ и дополнительным испытаниям в вузы. М.: АСТ-Пресс Книга, 2017.
- 4. Боринская С.А., Янковский Н.К. Люди и их гены: нити судьбы. Фрязино: Век 2, 2015.
- 5. Васильева Е.Е. Генетика человека с основами медицинской генетики. Пособие по решению задач. М.: Лань, 2016.
- 6. Высоцкая М.В. Нетрадиционные уроки по биологии в 5-11 классах. Волгоград, Учитель, 2010.
- 7. Генетика за 30 секунд. 50 фундаментальных открытий генетики, описанные за 30 секунд. /Ред.: Дж. Вайцман, М. Вайцман. М.: Рипол Классик, 2018.
- 8. Добжанский Ф.Г. Генетика и происхождение видов. /Ред. И. Захаров- Гезехус. М.: Регулярная и хаотическая динамика, Институт компьютерных исследований, 2010.
- 9. Дублин И.П. Генетика и человек. М.: Просвещение, 2010.
- 10. Жимулев И.Ф. Общая и молекулярная генетика. Новосибирск: НГУ, 2012.
- 11. Загорский В.В. Воспитать учёного. Монография. М.: НКП Экопоселение Любинка, 2013.
- 12. Заяц Р.Г. и др. Общая и медицинская генетика. /Р.Г. Заяц, В.Э. Бутвиловский, И.В. Рачковская, В.В. Давыдов. Ростов-н/Дону:Феникс, 2002.
- 13.Инге-Вечтомов С.Г. Генетика с основами селекции. Учебник для студентов высших учебных заведений. М.: Н-Л, 2015.
- 14. Киреева Н.М. Биология для поступающих в ВУЗы. Способы решения задач по генетике. Волгоград: Учитель, 2013.
- 15. Козак М.Ф. Дрозофила модельный объект генетики. Учебно-методическое пособие. Астрахань: АГУ, 2007.
- 16.Козлов Ю.Н., Костомахин Н.М. Генетика и селекция сельскохозяйственных животных. М.: КолосС, 2009.
- 17. Корженевская М.А. Генетика в клинической практике. /М.А. Корженевская, Л.Е. Анисимова, Е.В. Карпова, С.В. Розенфельд, Н.Н Степанов, Е.Ф. Того. М.: СпецЛит, 2015.
- 18. Кузнецов И.Н. Научное исследование: методика проведения и оформление. М.: Издательскоторговая корпорация «Дашков и К», 2004.
- 19. Мишакова В.Н., Дорогина Л.В., Агафонова И.Б. Решение задач по генетике. /Ред. А.А. Бобков. М.:

- Дрофа, 2010.
- 20. Мушкамбаров Н.Н., Кузнецов С.Л. Молекулярная биология. Учебное пособие. М.: Медицинское информационное агентство, 2016.
- 21. Петросова Р.А. Основы генетики. М.: Дрофа, 2005.
- 22. Пономарева И.Н., Соломин В.П., Сидельникова Г.Д. Общая методика обучения биологии. М.: Academia, 2003.
 - 23. Притчард Дориан Дж., Корф Брюс Р. Наглядная медицинская генетика. 24./Под ред. Е.С. Ворониной. М.: ГЭОТАР-Медиа, 2018.
- 25. Пухальский В.А. Введение в генетику. М.: КолосС, 2007.
- 26. Райан Ф. Таинственный геном человека. /Ред. О. Сивченко. М.: Питер, 2017.
 - 27. Рыбчин В.Н. Основы генетической инженерии. СПб: СПбГТУ, 2002. 28.Спирина Е.В. Учимся решать задачи по цитологии и генетике: учебнометодическое пособие. Ульяновск; УИПКПРО, 2010.

Интернет-ресурсы

- 1. Генетика и медицина: [Электронный ресурс] // Национальный центр биотехнологической информации. URL: https://www.ncbi.nlm.nih.gov/guide/genetics-medicine/ (Датаобращения: 19.06.2020).
- 2. Молекулярная генетика: [Электронный ресурс] // Большая Российская энциклопедия URL: https://bigenc.ru/biology/text/2223984 (Дата обращения: 19.06.2020).
- 3. Молекулярная генетика: [Электронный ресурс] // Наука. URL: https://www.sciencenow.ru/nauka-i-zdorove/molekulyarnaya-genetika/ (Дата обращения: 19.06.2020).

Приложение 1

Календарно-тематическое планирование

No॒	Тема занятия	Кол-	Дата	Факти
			проведе	ческая
		часов	ния	дата
				провед
				ения
1.	Введение	2		
	Роль ДНК и РНК в передаче	2		
2.	наследственных свойств. Свойствагенетического кода. Решение			
	задач			
3.	Правило пар оснований. Решение	2		
	задач по правилам Чаргаффа			
	Виды деления клеток. Лабораторная работа «Митоз на	2		
4.	корешке лука»			
	Образование половых клеток. Лабораторная работа «Строение	2		
5.	яйцеклетки». Решение задач насперматогенез и овогенез			

6.	Решение задач по молекулярной	2		
	1	4		
	цитологии Мужа и майса в мужичими мужита в такажай. Вамачима за так ма			
7.	Митоз и мейоз в жизненном циклеводорослей. Решение задач на	2		
/•	жизненный цикл водорослей			
	Митоз и мейоз в жизненном циклемхов. Решение задач	2		
8.	на жизненный цикл мхов			
	Митоз и мейоз в жизненном циклепапоротников, хвощей и плаунов.	2		
9.	Решение задач на жизненный циклпапоротникообразных			
	Митоз и мейоз в жизненном циклеголосеменных растений. Решение	2		
10.	задач на жизненный цикл			
	голосеменных			
	Митоз и мейоз в жизненном циклепокрытосеменных растений.	2		
11.	Решение задач на жизненный цикл			
	покрытосеменных			
12.	История развития генетики. Основные понятия генетики.	2		
	Практическая работа «Символика			
	генетики»			
13.	Моногибридное скрещивание.	2		
14.	Решение задач Анализирующее скрещивание.			
17.	Решение задач	2		
15.	Неполное доминирование. Решение задач	2		
16.	Дигибридное скрещивание. Решение задач	2		
17.	Множественное действие генов.	2		
	Кодоминирование. Решение задач			
18.	Эпистаз, его виды. Решение задач	2		
	на взаимодействие неаллельныхгенов			
19.	Сцепленное наследование и	2		
	кроссинговер. Решение задач			
20.	Летальные гены. Решение задач	2		
21	Решение задач с использованием разных законов и закономерностей	2		
21.	генетики			
	Генетика человека. Лабораторнаяработа «Составление	2		
22.	генеалогического древа»	4		
23.	Сцепленное наследование с полом	2		
	у человека. Решение задач		<u></u> _	
			1	

24.	Наследственность и среда. Влияниенаследственности и среды на	2	
	развитие ребенка	_	
25.	Адаптивная модификация. Норма	2	
	реакции	2	
	Практикум «Составление вариационных рядов и построение	2	
26.	кривых»; «Изучение скорости	2	
20.	сворачивания молока»;		
	«Определение жирности молока»		
27.	Генетика популяции. Решение задач по закону Харди - Вайнберга	2	
<i></i>	т спотика популиции. Тешение задат по закону ткарди Ванносрга	2	
28.	Виды изменчивости. Составление	2	
20.	типов мутаций	2	
	Загрязнение окружающей среды. Лабораторная работа «Изучение	2	
29	химического и бытового	2	
_,			
	загрязнения воды, почвы, воздуха»		
30.	Современные исследования вмолекулярной биологии и	2	
	цитогенетике	_	
31.	Генная инженерия и биотехнология	2	
32.	Трансгенные организмы и	2	
	продукты питания		
33.	Индекс пищевых добавок	2	
34.	Нанотехнология в микробиологии	2	
35.	Практическая работа.	2	
	Социологический опрос «Питаниеобучающихся»	_	
	•		
36.	Обобщение знаний. Зачетная	2	
- 1	работа	-	
	Итого:	72	